Streetcar Propulsion Power: Alternatives and Considerations
APTA Streetcar and Heritage Trolley Subcommittee

James H. Graebner, Chair
T.R. Hickey, AICP, Vice Chair
Timothy R. Borchers, Secretary / Technologist
James D. Schantz, Communications / History
Martin P. Schroeder, P.E., Chief Engineer, APTA

Public Meeting
Hosted by: DC Surface Transit, Inc.
Renaissance Hotel
Washington, DC

May 6, 2010
Introduction:
American Public Transportation Association

- Leading Force in Advancing Public Transportation Since 1882
- Legislation
- Conferences – Over 20 a year
- Education and Training
- Committee Activities
- Standards Development
- Data Collection and Dissemination
- Scientific Research
APTA’s Approach

- Neutral
- Apply Industry Experience
- Utilize our Experts within the Streetcar Subcommittee
 - James H. Graebner, Chair
 - Thomas Hickey, Vice Chair
 - Tim Borchers, Secretary & Technology
 - James Schantz, History and Data
Presentation Outline

- Streetcar Overview
- Conventional Power Systems
- Alternative Power Systems
- Energy Storage Technology
- Implementation and Operation
- Summary
Streetcar Overview

James H. Graebner
Chair, APTA Streetcar and Heritage Trolley Subcommittee
President, Lomarado Group
Denver, Colorado
DC Streetcars

- 1862 – 1962
 Streetcar Era

- 1888 – 1895
 Technology Turmoil
DC Streetcars - *Then and Now*

The fundamentals remain the same despite outward changes in appearance and upgrades in technology.
Streetcar Power Systems

- External power supply or generated on-board
- Continuous or not
 - If not continuous, on-board storage system is needed

Which approach (or combination of approaches) best suits the needs of the District?
Conventional Power Systems

James D. Schantz
APTA Streetcar and Heritage Trolley Subcommittee
Chairman, Board of Trustees
New England Electric Railway Historical Society
Kennebunkport, Maine
19th Century: Experimentation
19th Century: Success
20th Century: Standard Practice
Trolley Wire: What is is not...
Trolley Wire: What it is not...
Trolley Wire: What it is...

APTA Streetcar and Heritage Trolley Subcommittee

American Public Transportation Association
Trolley Wire: Poles and Spans
Trolley Wire: Poles and Spans
Trolley Wire: Building Anchor
Trolley Wire: Building Anchor
Trolley Wire: Building Anchor
Trolley Wire: Bracket Arm
Trolley Wire: Bracket Arm
Trolley Wire: Curves
Trolley Wire: Curves
Trolley Wire: Summary

- Used for 120 years around the world
- Inexpensive to build and maintain
- Half inch diameter, 18 feet up
- Visual intrusion can be minimized
Conduit: Only Widely Used Alternative
Conduit: Only Widely Used Alternative
Alternative Power Systems

Timothy R. Borchers
APTA Streetcar and Heritage Trolley Subcommittee
Principal, City Rail Solutions
Tampa, Florida
Alternatives to Overhead Contact System (OCS)

- Ground level power supply.
- On-board electric energy storage (batteries, flywheels, super or ultra capacitors)
- On-board electric energy generation (internal combustion engine, fuel cell)
*Ground Level Power Supply

Innorail/APS
Ground Level Power Supply
Innorail/APS

- Bordeaux France
- Daily ridership 165,000
- Total system length 43 km (27 mi)
- 12 km of APS
- 74 Citadis trams

The Alstom Innorail or Ground-level power supply, is also known as surface current collection and Alimentation par Sol (APS)
Ground Level Power Supply
Innorail/ APS
The system had a number of “teething” problems, poor drainage and debris on the contact strips caused service unreliability. Reliability has improved and one kilometer of surface contact replaced with OCS. Reliability under heavy ice and snow conditions has not been established.
Ground Level Power Supply
Innorail/ APS
Ground Level Power Supply
Innorail/ APS
Ground Level Power Supply

Innorail/APS

- Sources suggest that in Europe APS adds about US $130,000 to the cost of each tram, while the infrastructure is about 300% more expensive than overhead wires.

- Several new French and European tram systems will use APS over part of their networks.

- The planned Al Sufouh Tramway in Dubai will use APS exclusively.
Primove was unveiled by Bombardier on Jan. 2 2009.

It uses a magnetic field to transmit power from a circuit built into the track to pick-up coils beneath a tram. These coils transform the magnetic energy into electricity which charges super capacitors on the tram.

The in-ground equipment is energized only when covered by the vehicle. The prototype provided sufficient power for a 98-ft.-long (30 meter) LRV operating at 25 mph (40 kph) on a six-percent grade.

Bombardier Primove market-ready in 2010.
Ground Level Power Supply - Primove

Using inductive power to charge super capacitors to power the tram.
On-board electric energy storage (batteries, flywheels, super capacitors)

Comparison of Battery Systems

<table>
<thead>
<tr>
<th>Battery type</th>
<th>Energy density Wh/kg</th>
<th>Power density W/kg</th>
<th>Service life in cycles / years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead-acid battery</td>
<td>30 – 50</td>
<td>150 – 300</td>
<td>300 – 1,000 / 3 – 5</td>
</tr>
<tr>
<td>Nickel-metal hydride battery</td>
<td>60 – 80</td>
<td>200 – 300</td>
<td>>1,000 / >5</td>
</tr>
<tr>
<td>Lithium-ion battery</td>
<td>90 – 150</td>
<td>500 – >2,000</td>
<td>>2,000 / 5 – 10</td>
</tr>
<tr>
<td>Supercaps (double layer capac.)</td>
<td>3 – 5</td>
<td>2,000 – 10,000</td>
<td>1,000,000 / unlimited</td>
</tr>
</tbody>
</table>

Energy density in watt-hours per kilogram (Wh/kg)

Power density in watts per kilogram (W/kg)
On-board electric energy storage batteries - Trio Streetcar

Skoda, Inekon and United Streetcar Trio type streetcars may operate wireless in the maintenance facility or through an intersection in the case of OCS power failure.
On-board electric energy storage batteries - Nice France

Nice France
- Opened early 2007
- System Length 8.7 km (5.4 mi)
- Alstom Citadis with batteries
- 20 trainsets
- Daily Ridership 70,000
On-board electric energy storage batteries
- Nice France

- No OCS on 2 squares, Place Massena (435 m) & Place Garibaldi (485 m).

- Use of roof-fitted NiMH (nickel-metal hydride) batteries capable of providing up to 1km of travel at 30km/h.
On-board electric energy storage batteries - SWIMO Battery Tram

Kawasaki SWIMO Battery Car, can operate for 10 kilometers (6 miles) on a single charge of 5 minutes.

In trials, the best performance was 37.5km without re-charging. Between December 2007 and March 2008, trial runs were undertaken in Sapporo City Japan.

Onboard batteries are nickel-metal hydride.
On-board electric energy storage batteries - SWI MO Battery Tram
On-board electric energy storage batteries - SWIMO Battery Tram

Non-electrified segments

When braking When accelerating When stopped

Driving motor Battery Air conditioning system and other auxiliaries
Driving motor Battery Air conditioning system and other auxiliaries
Driving motor Air conditioning system and other auxiliaries
On-board electric energy storage flywheel.

In Rotterdam, the Netherlands, Alstom the flywheel. It stores kinetic energy from braking and can be re-loaded on sections with OCS to again deliver energy over an OCS section of up to 2 kilometers at 50 kph.
On-board electric energy storage flywheel.

A carbon fibred rotating permanent magnet motor-generator located on the roof of the tram works on the same principle as a spinning top.

The kinetic energy stored during braking is restored by the electric generator is returned to the propulsion system when the tram accelerates.

The system is recharged each time the brakes are applied or by a complementary high-speed recharging system each time the tramway stops at a station.
Power Systems - Storage Capacitors

- Theory behind electrochemical (EC) or double layer capacitors (DLC) known for over 100 years, not until the 1960s was developed as a functional energy storage device.
- Known also as Super or Ultra Capacitors.
- Super capacitors or Ultra capacitors used by the US military to start the engines of tanks and submarines.
On-board electric energy storage super or ultra capacitors.

Banks of Supercaps on the roof of a Scania bus.
On-board electric energy storage super or ultra capacitors - Mitrac.

- The PRI MOVE system uses Bombardier MITRAC Energy Saver which ensures continuous vehicle operation.
- Mitrac stores energy during braking and constantly charges during operation, picking up power from the underground section during OCS free operation. Enables OCS free operation over limited distances.
- Combination of capacitors and storage cells.
On-board electric energy storage super or ultra capacitors - Savannah.

- Developed and built by Electric Motor & Supply in Altoona Pennsylvania in 2008 in response to City of Savannah’s requirements.
- 100% US.
- May operate with or without OCS.
- Based on Allen-Bradley distributed Rockwell Automation and other off the shelf components with some custom made devices.
- 100% super capacitor powered.
- Operating passenger service since February 2009.
On-board electric energy storage
super or ultra capacitors - Savannah.
On-board electric energy storage super or ultra capacitors - Savannah.
On-board electric energy storage super or ultra capacitors - ACR.

Construcciones y Auxiliar de Ferrocarriles (CAF) Rapid Charge Accumulator ACR (Spanish initials).

- CAF will install its new OCS free system along a 1.6 km of route of visual significance in Seville (Spain).
- The CAF joint venture has been selected to supply 13 low-floor trams with energy storage for Granada’s (Spain) initial 15.9 km light rail route.
- Supply ACR solutions for Zaragoza (Spain) tramway. Zaragoza is currently developing a project for the construction of a tram network, half of which is equipped with an OCS system.
On-board electric energy storage super or ultra capacitors - ACR.

CAF ACR System

- Up to 1200 meters of OCS free running range depending on route characteristics between stops or incidents on the line.
- Modular and scalable.
- Suitable for use on existing systems.
- 20 second charge times, compatible with stopping times at stations.
- Non-captive system (material/infrastructure independent).
On-board electric energy storage super or ultra capacitors- Sitras.

- Siemans Sitras system can operate without an overhead contact system for 2,500 meters.
- Can can be retrofitted to existing vehicles, infrastructure remains unaffected.
- In Portugal, the system has been successfully used in passenger services since November 2008.
- Certified according to BoStrab (German Construction and Operating Code for Tramways).
- The system consists of double-layer capacitors and nickel-metal hydride batteries mounted on roof surfaces.
On-board electric energy storage internal combustion engine - Tram/Train.
On-board electric energy storage internal combustion engine - Tram/Train.

Alstom

Regio CITADIS (tram) and CITADIS Dualis (Light Rail).

All current railway power supply systems and high performance diesel traction may be incorporated. Full low floor between the first and last doors, Regio CITADIS can carry up to 800 passengers.
On-board electric energy storage (internal combustion engine, fuel cell).

Siemans

A Nordhausen (Germany) Siemans ‘DUO’ Combino linking the urban tramway, where it is electrically powered via overhead wires, and the rural railway, where it is powered by an onboard diesel engine.
On-board electric energy storage fuel cell.

- No overhead Contact Line.
- Hybrid traction system onboard energy storage allows braking energy recovery and supplies power.
- Hydrogen storage, compression and distribution in the maintenance facility.
- On-board hydrogen storage.
On-board electric energy storage fuel cell.

- State requirements and recommendations for future streetcar generations.
- Experimental streetcar in real operation conditions with passengers.
- Size and type of plant required.
- Production and distribution.
- Assess economical feasibility (Life Cycle Cost)
- Lifetime objective same as actual streetcar systems around 30 years.
On-board electric energy storage

Vehicle without Energy Storage System

Electric Sub-station
Recovery

Traction Energy

Braking Energy

Rheostatic losses
Grid restitution
On-board electric energy storage

Vehicle with Energy Storage System

Electric Sub-station
Flywheel discharge
Recovery

Traction Energy

Braking Energy

Rheostatic losses
Flywheel Recharge
Grid restitution

APTA Streetcar and Heritage Trolley Subcommittee
American Public Transportation Association
Energy Storage Technology

Martin P. Schroeder, P.E.
APTA Streetcar and Heritage Trolley Subcommittee
Chief Engineer, American Public Transportation Association
Energy Storage Benefits

- Braking Energy Capture
- Voltage Sag Correction
- Reduction of Line Energy Demand
- Power Leveling
- Reduction of Substations
- Wireless Operation
Voltage Sag Problems

Simulated Bus Voltages At G05B Location

- Bus Voltage - With 3MW ESD
- Bus Voltage - Without ESD

Voltage (V)

<table>
<thead>
<tr>
<th>Time</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:35:50</td>
<td>79V</td>
</tr>
<tr>
<td>7:36:00</td>
<td>550</td>
</tr>
<tr>
<td>7:36:10</td>
<td>600</td>
</tr>
<tr>
<td>7:36:20</td>
<td>700</td>
</tr>
<tr>
<td>7:36:30</td>
<td>800</td>
</tr>
<tr>
<td>7:36:40</td>
<td>900</td>
</tr>
<tr>
<td>7:36:50</td>
<td>950</td>
</tr>
</tbody>
</table>

Charging 0'26"
Discharging 0'26"

American Public Transportation Association
APTA Streetcar and Heritage Trolley Subcommittee
Peak Power Problems

Simulated Power Demand Over A Supply District

American Public Transportation Association
APTA Streetcar and Heritage Trolley Subcommittee
American Public Transportation Association
Example Types of Energy Storage

- Lead Acid
- Nickel Metal Hydride (NiMH)
- Lithium Ion (Li-ion)
- EC Capacitor
- Fuel Cells
- Flywheel
- Flow Batteries
- REDOX
Energy Storage Performance Measures

- Capacity
- Cycle Depth
- Cycle Frequency
- Voltage
- Internal Resistance Efficiency
- Operating Temperature
- Shelf Life
- Discharge and Charge Rates
Ragone Diagram

Energy density [Wh/kg]

Power density [W/kg]

- FUEL CELLS
- BATTERIES
- FLY WHEEL
- DOUBLE-LAYER CAPACITORS
- SMES
- BOOSTCAPs
- CAPACITORS

APTA Streetcar and Heritage Trolley Subcommittee
On-board electric energy storage (batteries, flywheels, super capacitors)

Comparison of Battery Systems

<table>
<thead>
<tr>
<th>Battery type</th>
<th>Energy density Wh/kg</th>
<th>Power density W/kg</th>
<th>Service life in cycles / years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead-acid battery</td>
<td>30 – 50</td>
<td>150 – 300</td>
<td>300 – 1,000 / 3 – 5</td>
</tr>
<tr>
<td>Nickel-metal hydride battery</td>
<td>60 – 80</td>
<td>200 – 300</td>
<td>>1,000 / >5</td>
</tr>
<tr>
<td>Lithium-ion battery</td>
<td>90 – 150</td>
<td>500 – >2,000</td>
<td>>2,000 / 5 – 10</td>
</tr>
<tr>
<td>Supercaps (double layer capac.)</td>
<td>3 – 5</td>
<td>2,000 – 10,000</td>
<td>1,000,000 / unlimited</td>
</tr>
</tbody>
</table>

American Public Transportation Association
APTA Streetcar and Heritage Trolley Subcommittee
Energy Storage Cost Points

[Diagram showing various energy storage technologies and their cost per unit power ($/kW). Technologies include Li-ion, Ni-Cd, NiMH, Pb-Acid Batteries, CAES, Pumped Hydro, Metal-Air Batteries, Zinc-Air Battery, and Electrochemical Capacitors. Cost ranges from $10 to $10,000 per kWh.]
Energy Density

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>645,000,000</td>
</tr>
<tr>
<td>Automotive</td>
<td>8.10</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>1.62</td>
</tr>
<tr>
<td>Zinc Air Battery</td>
<td>1.33</td>
</tr>
<tr>
<td>Sodium Sulfur</td>
<td>0.77</td>
</tr>
<tr>
<td>Lithium Ion</td>
<td>0.54</td>
</tr>
<tr>
<td>Flywheel</td>
<td>0.5</td>
</tr>
<tr>
<td>NiMH</td>
<td>0.22</td>
</tr>
<tr>
<td>NiCd</td>
<td>0.14</td>
</tr>
<tr>
<td>Lead Acid</td>
<td>0.09</td>
</tr>
<tr>
<td>Redux</td>
<td>0.09</td>
</tr>
<tr>
<td>EC Capacitor</td>
<td>0.02</td>
</tr>
<tr>
<td>Spring</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

For relative comparison only.

Advances in technology are changing capacities of these devices.
Possible Energy Storage Configurations

- Alignment
 - No Gap
 - Limited Gap
 - Full Storage

- Utilization of Regenerative Braking

- Power Quality & Voltage Sag Protection

- Efficiency
Putting it Together - Needs

- Alignment Definition
 - Terrain
 - Stops
 - Lengths between stations
 - Lengths of wireless operation
 - Ridership

- Vehicle Design
 - Storage
 - Regeneration
 - Efficiency
 - Maintenance
On-board Energy Storage Devices Receiving Significant Attention

- NiMH
- EC Capacitor
- Li-ion
- Hybrid – Battery / Capacitor
- Fuel Cell
- Flywheel
Practical Considerations

- Operations
- Maintenance
- Risk – Cost, Service, Experience, etc.
- Cost Investment / Payback
- Reliability
- Fit to Function
Implementation and Operations

T. R. Hickey, AICP
Vice Chair, APTA Streetcar and Heritage Trolley Subcommittee
Associate Vice President
Metropolitan Transit Authority of Harris County
Houston, Texas
Operator’s Checklist

- Safe?
- Reliable?
- Affordable?
- Sustainable?

Are the RISKS manageable?
A Tale of Two Agencies…

APTA Streetcar and Heritage Trolley Subcommittee

American Public Transportation Association
Risk Management

- Begins with a Risk Management Plan
 - FTA Risk Assessment Process
 - Design/construction risks
 - What events may occur to the detriment of the project?
 - Probability
 - How likely is it that each event will occur?
 - Financial risk
 - What would it cost to mitigate/recover from an occurrence?
 - Defined and managed through a Risk Register
Risk Management vs. Risk Avoidance

- Assess your risks
- Don’t shy away from emergent technologies
 - But maintain realistic skepticism
 - Have a ‘B’ Plan ready
Practical Experience

James H. Graebner
Chair, APTA Streetcar and Heritage Trolley Subcommittee
President, Lomarado Group
Denver, Colorado
Summary

<table>
<thead>
<tr>
<th>POWER SUPPLY SYSTEMS</th>
<th>Visual Impact</th>
<th>Capital Cost</th>
<th>O&M Cost</th>
<th>Proprietary Technology</th>
<th>Proven Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead Contact System</td>
<td></td>
</tr>
<tr>
<td>Underground Conduit System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground-Level Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contactless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Board Generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Combustion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POWER STORAGE SYSTEMS

Batteries	![No Issues](#)				
Capacitors	![No Issues](#)				
Flywheels	![No Issues](#)	![Unresolved](#)	![Unresolved](#)	![Unresolved](#)	![Unresolved](#)
Thank you