The Multi Modal Intelligent Transportation System (MMITSS): Connected Vehicle Capabilities for Transit/Streetcars

Larry Head University of Arizona

February 27, 2019 Tucson, AZ

American Public Transportation Association Streetcar Subcommittee 2019 Mid-Year Meeting

Connected Vehicles

DSRC 5.9 GHz Wireless

Basic Safety
Message
(SAE J2735 BSM)
Broadcast 10
times/second
(10 HZ)

Purpose:

- Safety
- Mobility
- Environment

Basic Safety Message (BSM)

- Temporary ID (ensure privacy)
- Position (GPS)
- Motion
 - Speed
 - Heading
 - Steering Wheel Angle
 - Acceleration
- Brakes
- Vehicle Size
- Mode (vehicle, transit, truck, EV,...)

Connected Vehicles and Infrastructure Systems

Vehicle(s)...

+

Connected Vehicle Equipment

On Board Unit (OBU)
After Market Safety Device (ASD)

DSRC 5.9 GHz Radio

- BSM/SRM
- Signal Phase and Timing (SPaT)
- MAP

Cooperative Applications:

- Transit Priority
- Truck Priority
- Emergency Vehicle Priority

MAP Data
Digital Description of Roadway

(D. Kelley, 2012) DEFICE FOR RESEARCH & DISCOVERY Transportation Research Institute

Connected Vehicles

Technology, Equipment and Standards

SAE J2735 Message Set SAE J2945/0 Minimum Performance Requirements

Connected Vehicle
Infrastructure Equipment
Road Side Unit (RSU)

NTCIP 1202, 1211 Messages

DSRC Roadside Unit (RSU) Specifications Document v4.1 (USDOT October 31, 2016)

Ethernet IEEE802.3

The Multi Modal Intelligent Traffic Signal System Program

Funded as Connected Vehicle Pooled Fund Project (FHWA, MCDOT, Caltrans, VDOT, FDOT, MnDOT, TxDOT,...)

- University of Arizona
 - Larry Head (PI)
 - Sherilyn Keaton (Software Manager)
 - GRA: Niraj Altekar, Debashsis Das
 - National Academies: Medhi Zamanapour (FHWA, PhD 2016)
- PATH/UC Berkeley
 - Kun Zhou (co-PI)
 - Huadong Meng (Research Engr)
 - John Spring (Software Engr)
 - David Nelson (Hardware Engr)
- Maricopa County DOT
 - Faisal Saleem, April Wire, LeShawn Charlton
- California DOT
 - Greg Larson

MMITSS Basic Concepts

- Rail Crossings
- Emergency Vehicles
- Freight
- Coordination
- Transit
 - BRT
 - Streetcar
 - Express
 - Local (Late)
- Passenger Vehicles
- Pedestrians

Traffic Control System

Section 1

- Priority for
 - Freight

MMITSS Basic Concepts

Priority Hierarchy

- Rail Crossings
- Emergency Vehicles
- Transit
 - Streetcar
 - BRT
 - Express
 - Local (Late)
- Pedestrians
- Passenger Vehicles
- Freight

A Traffic Control System

Section 2

- Priority for
 - Streetcar
 - Pedestrians

MMITSS Basic Concepts

Real-Time Performance Measures – by **MODE**, by movement

- Volume (mean, variance)
- Delay (mean, variance)
- Travel Time (mean, variance)
- Throughput (mean, variance)
- Stops (mean, variance)

MMITSS Priority Control

- Integrated approach to Signal Control and Prioritization
- Consistent with NTCIP SCP 1211 Standard (2014)
- Key Features
 - Accommodate Multiple Active Priority Requests from Different Modes
 - N-Level Priority Hierarchy
 - Coordination within the Priority Control Framework

MMITSS Architecture

MMITSS Characteristics

- Uses Connected Vehicle Data
 - BSM, MAP, SRM, SSM, (SPaT)
- ISIG: Adaptive Control
 - RT-TRACS, RHODES, COP, OPAC,...
- PRIORITY (EVP, TSP, FSP): Priority Request Server (MRP)/Generator (OBU)
 - NCHRP 3-66, NTCIP 1211
- PEDSIG
 - Smartphone APP

Development MMITSS (AZ) Software Architecture

Basic Operational Concept: Priority Control

- When a [streetcar] vehicle enters/remains in the range of an RSU
 - 1. Hears (Listens for...)
 - MAP/SPaT
 - WAVE Service Announcement (go to channel XX to talk)
 - Computes Position on MAP, Desired Service Time (ETA), Desired Ingress and Egress (known for streetcar!)
 - 3. Sends a Signal Request Message (SRM)
 - 4. Receives Signal Status Message (SSM* confirmation)
 - 5. Passes through intersection
 - 6. Sends a Cancel Signal Request Message (SRM)

Additional Details

Arizona Connected Vehicle Test Bed Anthem, AZ

DSRC Installations:

- 11 Signalized Intersection
- 6 Freeway Interchanges¹
- 10 Freeway Locations¹
 Approx. 25,000 Residents
 Approx. 10,000 Vehicles

Freight Signal Priority (FSP) - Simulation

- MC-85 Maricopa County
 - 19 Signalized Intersection

FSP: Simulation Estimates of Benefits (with MMITSS at 8/19 Signals)

- Reduced Stops by 20%
 - Reduce the Impact on Pavement
 - Reduce acceleration Improved Air Quality
 - Less Delay
- Improved "Smoothness" of Traffic Flow

The "Impact" of Connected Vehicles/MMITSS

- MMITSS Project Discussion/Plan
- MMITSS Project Proposal Developed
- MMITSS Project Active

Portland Deployment

- Deploy on the "Art Museum Corridor"
- 2 streetcars, 4 intersections
- Simple goals: get the hardware installed, functioning; get data transferring to PORTAL; build initial analytics

Portland State University
City of Portland
University of Arizona

MMITSS Project Status

- ✓ Phase 1: Concept of Operations, Requirements and High Level Design
 - ✓ March 2012 March 2013
 - ✓ Produced Concept of Operations, Requirements Document and High Level Design Document
 - √ http://www.cts.virginia.edu/cvpfs research/
- ✓ Phase 2: System Development, Deployment and Field Test
 - ✓ October 2013 April 2015
 - ✓ Developed MMITSS-AZ and MMITSS-CA
 - ✓ Conducted Field Demonstrations and Impact Assessment of MMITSS-AZ (Leidos)
 - ✓ Software available through USDOT OSADP (https://www.itsforge.net/index.php/community/explore-applications#/30/63)
- Phase 3: Deployment Readiness Enhancements
 - February 2018 July 2019
 - Improve software maturity, deployment support, user support
 - ✓ MMITSS Development Group (MDG) for open source development community

V2V - Emergency Vehicle Alert

- V2X Communication of Location/Speed of Emergency Vehicles
- In-vehicle Alert
 - "Behind You"
 - "Approaching Intersection from Left"
 - •

Challenges and Opportunities

- Challenge: FCC Allocation of 5.9GHz Spectrum is under attack
 - WIFI Industry wants to stream movies and have more WIFI access
 - 5GAA wants to use part of the spectrum for deployment of LTE (they call it 5G, but lets be honest)
 - We aren't using the spectrum to its full advantage
 - Office of Management and Budget (OMB) moved the NHTSA Mandate to a long term priority (no new regulations or to get one, remove two)
- Opportunity: DSRC is in FCC regulations. Legally it is the only available solution
 - It works
 - It is effective
 - We can deploy!

Questions? Discussion

Larry Head
University of Arizona
Transportation Research Institute
University of Arizona
klhead@email.arizona.edu
(520) 621-2264

Backup Slides for MMITSS

Traffic Control Terminology

A Core Logic Model

Barrier **Dual Ring** Controller 8 (Core Logic) Barrier $t_4^1 + v_4^1$ $t_2^2 + v_2^2$ $t_6^2 + v_6^2$ t_7^2 $t_6^1 + v_6^1 t_7^1$ Cycle 2 Cycle 1

Precedence Diagram

(works for general precedence relationships – not just dual ring)

Phase Logic

Phase Configuration and Real-time Data

Transportation Research Institute

Requests for Priority

- Preemption
 - Heavy Rail
 - Emergency Vehicles*

Request for Phase 8 at t=38

Priority

- Buses
- Pedestrians
- Trucks
- Special Vehicles
- Evacuation

Multiple Requests for Priority

There could be many requests from many vehicles

Model Formulation

Minimize Total Priority Delay + Vehicle Cost s.t.

Precedence Constraints

Phase Duration & Interval Constraints

Service Phase Selection Constraints Phase Calls and Flags

Decision Variables:

phase start times =
$$t_p^j$$
, durations = v_p^j
green time = g_p^k , given yellow = y_p , red = r_p

$$v_{p}^{k} = \begin{cases} g_{p}^{k} + y_{p} + r_{p} & \text{if } g_{p}^{k} > 0 \\ 0 & \text{if } g_{p}^{k} = 0 \end{cases}$$

service phase = θ_e^j , $\theta_s^j \in \{0,1\}$, phase and interval skipping = $S_{p}^j \in \{0,1\}$

Precedence Constraints

$$t_{1}^{1} = 0$$

$$t_{5}^{1} = 0$$

$$t_{2}^{k} = t_{1}^{k} + v_{1}^{k}$$

$$t_{6}^{k} = t_{5}^{k} + v_{5}^{k}$$

$$t_{3}^{k} = t_{2}^{k} + v_{2}^{k}, \quad t_{3}^{k} = t_{6}^{k} + v_{6}^{k}$$

$$t_{7}^{k} = t_{2}^{k} + v_{2}^{k}, \quad t_{7}^{k} = t_{6}^{k} + v_{6}^{k}$$

$$t_{4}^{k} = t_{3}^{k} + v_{3}^{k}$$

$$t_{8}^{k} = t_{7}^{k} + v_{7}^{k}$$

$$t_{1}^{k+1} = t_{4}^{k} + v_{4}^{k}, \quad t_{1}^{k} = t_{8}^{k} + v_{8}^{k}$$

$$t_{5}^{k+1} = t_{4}^{k} + v_{4}^{k}, \quad t_{5}^{k} = t_{8}^{k} + v_{8}^{k}$$

for
$$k = 1, ..., K$$

for
$$k = 1, ..., K-1$$

Phase Duration Constraints

$$t_p^k \ge 0,$$

$$g_p^k(\Omega, \Phi, \omega, s_p^k) \le g_p^k \le \overline{g_p^k}(\Omega, \Phi, \omega, s_p^k), \quad \text{for all } p \text{ and } k$$

where,

 Ω is a vector of phase parameters (min, max, walk, dfw, ext,...) Φ is a vector of phase flags (recall, omit, etc.), and ω is a vector of real-time phase calls (vehicle, ped), and s_p^k are binary interval decision variables (skip, don't skip)

Phase Interval Constraints

$$\underline{g_{p}} = Max \begin{cases} D \min_{p} \bullet (1 - X \min_{p} R_{p}), \\ Damin_{p} \bullet Cphs_{p} (1 - Sa \min_{p}^{k}), \\ (Dw_{p} + Dfdw_{p}) \bullet Cped_{p} \bullet (1 - Sped_{p}^{k}), \\ D \max_{p} \bullet X \max_{p} R_{p} \end{cases} \bullet (1 - SC_{p}^{k}) \bullet (1 - Xomit_{p})$$

$$\overline{g_p} = \left\{ \max \left(D \max_p, (Dw_p + Dfdw_p) \bullet Cped_p \right) \right\} \bullet (1 - SC_p^k) \bullet (1 - Xomit_p)$$

Service Phase Selection Constraints

 $\theta_{p,e}^{j,k} \in \{0,1\}$ serve Request j before phase (p) in the k^{th} cycle $\theta_{p,s}^{j,k} \in \{0,1\}$ serve Request j during phase (p) in the k^{th} cycle

$$\sum_{k} \theta_{p,e}^{j,k} + \theta_{p,s}^{j,k} = 1$$
for every priority request R_{p}^{j}

Service Phase Selection Constraints

$$t_{p}^{1} - R_{p}^{j} \ge (\theta_{p,e}^{j,1} - 1)M$$

$$t_{p}^{1} + v_{p}^{1} - R_{p}^{j} \ge (\theta_{p,e}^{j,1} + \theta_{p,s}^{j,1} - 1)M$$

$$t_{p}^{2} - R_{p}^{j} \ge (\theta_{p,e}^{j,1} + \theta_{p,s}^{j,1} + \theta_{p,e}^{j,2} - 1)M$$

$$t_{p}^{2} + v_{p}^{2} - R_{p}^{j} \ge (\theta_{p,e}^{j,1} + \theta_{p,s}^{j,1} + \theta_{p,e}^{j,2} + \theta_{p,s}^{j,2} - 1)M$$

$$t_{p}^{3} - R_{p}^{j} \ge (\theta_{p,e}^{j,1} + \theta_{p,s}^{j,1} + \theta_{p,e}^{j,2} + \theta_{p,s}^{j,2} + \theta_{p,e}^{j,3} - 1)M$$

$$t_{p}^{3} + v_{p}^{3} - R_{p}^{j} \ge (\theta_{p,e}^{j,1} + \theta_{p,s}^{j,1} + \theta_{p,e}^{j,2} + \theta_{p,s}^{j,2} + \theta_{p,e}^{j,3} + \theta_{p,e}^{j,3} - 1)M$$

$$\begin{split} R_{p}^{j} - t_{p}^{1} &\geq -\theta_{p,e}^{j,1} M \\ R_{p}^{j} - (t_{p}^{1} + v_{p}^{1}) &\geq -(\theta_{p,e}^{j,1} + \theta_{p,s}^{j,1}) M \\ R_{p}^{j} - t_{p}^{2} &\geq -(\theta_{p,e}^{j,1} + \theta_{p,s}^{j,1} + \theta_{p,e}^{j,2}) M \\ R_{p}^{j} - (t_{p}^{2} + v_{p}^{2}) &\geq -(\theta_{p,e}^{j,1} + \theta_{p,s}^{j,1} + \theta_{p,e}^{j,2} + \theta_{p,s}^{j,2}) M \\ R_{p}^{j} - t_{p}^{3} &\geq -(\theta_{p,e}^{j,1} + \theta_{p,s}^{j,1} + \theta_{p,e}^{j,2} + \theta_{p,s}^{j,2} + \theta_{p,e}^{j,3}) M \\ R_{p}^{j} - (t_{p}^{3} + v_{p}^{3}) &\geq -(\theta_{p,e}^{j,1} + \theta_{p,s}^{j,1} + \theta_{p,e}^{j,2} + \theta_{p,s}^{j,2} + \theta_{p,e}^{j,3} + \theta_{p,s}^{j,3}) M \end{split}$$

Total Priority Delay

Minimize
$$D = \sum_{(p,j)} \sum_{k} \theta_{p,e}^{j,k} (t_p^k - R_p^j)$$

Some Issues/Enhancements

- Model is mixed integer-nonlinear
- Model doesn't account for coordination behavior
- Model results in fixed time control, e.g. phases are not actuated based on vehicles calls (detection)
- Priority requests are points in time, in reality there is uncertainty in arrival times (Robust)
- Solution uses commercial solvers (CPLEX)

Qing He, PhD, July 2010

Deterministic. MILP Formulation (revised from Head et al. 2006)

Minimize: total priority delay

$$\sum_{\mathrm{j,p,k}} D_{\mathrm{jpk}}$$

Data: R_{jp} g_{pk}^{min} g_{pk}^{max}

Variable: D_{jpk} t_{pk} g_{pk} θ_{jpk}

Dual-ring, eight-phase controller

request with phase

Phase duration constr. –

$$g_{pk}^{\min} \le g_{pk} \le g_{pk}^{\max} \quad \forall p, k$$

with phase p.

Serving Priority Requests -Phase Time Diagram

Request for Phase 2 at Time 50

Ring 1

S2

Request for Phase 8 at Time 60

Request for Phase 3 at **Time 120**

Request for Phase 2 at Time 170

Serving Priority Requests – Phase Time Diagram_

Phase:

Ring 1

Request for Phase 2 at Time 50

Request for Phase 8 at Time 60

Request for Phase 7 at Time 120

Request for Phase 2 at Time 170

Flexible Implementation Algorithm (Zamanipour et al., 2016)

Critical points for one request

```
CLP1: max {FL1, BL3}
```

CLP2: max {FL2, BL2}

CLP3: max {FL3, BL1}

CLP4: BR1

CRP1: min {FR1, BR4}

CRP2: min {FR2, BR3}

CRP3: min {FR3, BR2}

CRP4: BR1

< Zamanipour's Ph.D final defense slide>

Field Testing Scenarios, March 3rd and 4th: Designed and Conducted by Leidos (IA Contractor)

- 2 trucks with priority in northbound/southbound
- 2 buses with priority in eastbound/westbound
- 10 rounds of testing
- 6 regular vehicles

Source: Leidos Field Test Plan

Field Test Result for Transit Priority

	Baseline (2 buses without Priority Requests for 10 Round Trips)	TSP (2 buses with Priority Requests for 10 Round Trips)	Improvement (%)
Average TT (sec)	850.12	762.56	-10.3
TT Standard Deviation	91.13	53.48	-41.3

Time-Space Diagram without MMITSS

- Daisy Mountain and Gavilan Peak Northbound Movement
 - Number of Stops: 5, Number of Queue Encounters:1
 - Using BSMs sent from Truck #1

Time-Space Diagram with MMITSS

- Daisy Mountain and Gavilan Peak Northbound Movement
 - Number of Stops: 1, Number of Queue Encounters: 2
 - Using BSMs sent from Truck#1

Findings for Freight Priority

	Baseline (2 trucks without Priority for 10 Round Trips)	FSP (2 trucks with Priority for 10 Round Trips)	Improvement (%)
Average TT (sec)	182.42	175.44	-3.84
TT Standard Deviation	36.28	28.37	-21.78

MMITSS Pedestrian Smartphone App

MMITSS Pedestrian Smartphone app

Allows Pedestrian to receive auditory and haptic feedback

- Align with Crosswalk
- Send Call for Service
- Be given WALK
- PedCLEAR Countdown

Sara Khosravi, PhD Student

Savari SmartCross (SBIR) Application Architecture

From US DOT Briefings on Connected Vehicle

Latency vs. Communications Technologies For IntelliDriveSM

Active Safety Latency Requirements (secs)		
Traffic Signal Violation Warning	0.1	
Curve Speed Warning	1.0	
Emergency Electronic Brake Lights	0.1	
Pre-Crash Sensing	0.02	
Cooperative Forward Collision Warning	0.1	
Left Turn Assistant	0.1	
Lane Change Warning	0.1	
Stop Sign Movement Assistance	0.1	

Least stringent latency requirement for Active Safety (1 sec)

Most Stringent latency requirement for Active Safety (.02 sec)

Communications Technologies

Note: Y-axis not to scale for illustration purposes

March 25, 2016

Data source: Vehicle Safety Communications Project – Final Report 49

WAVE Communications

